14 research outputs found

    LC-VCO design optimization methodology based on the gm/ID ratio for nanometer CMOS technologies

    Get PDF
    In this paper, an LC voltage-controlled oscillator (LC-VCO) design optimization methodology based on the gm/ID technique and on the exploration of all inversion regions of the MOS transistor (MOST) is presented. An in-depth study of the compromises between phase noise and current consumption permits optimization of the design for given specifications. Semiempirical models of MOSTs and inductors, obtained by simulation, jointly with analytical phase noise models, allow to get a design space map where the design tradeoffs are easily identified. Four LC-VCO designs in different inversion regions in a 90-nm CMOS process are obtained with the proposed methodology and verified with electrical simulations. Finally, the implementation and measurements are presented for a 2.4-GHz VCO operating in moderate inversion. The designed VCO draws 440 μA from a 1.2-V power supply and presents a phase noise of -106.2 dBc/Hz at 400 kHz from the carrier

    Semi-empirical RF MOST model for CMOS 65 nm technologies: theory, extraction method and validation

    Get PDF
    This paper presents a simple but accurate semi-empirical model especially focused on 65 nm MOST (MOS transistor) technologies and radio-frequency (RF) applications. It is obtained by means of simple dc and noise simulations extracted over a constrained set of MOSTs. The fundamental variable of the model is the MOST transconductance to current drain ratio gm/ID. Specifically it comprises the large signal DC normalized current, all conductances and transconductances and the normalized intrinsic capacitances. As well, noise MOST characteristics of flicker noise, white noise and MOST corner frequency description are provided. To validate the referred model the widely utilized cascoded common source low noise amplifier (CS-LNA), in 2.5 GHz and 5.3 GHz RF applications is picked. For the presented set of designs different gm/ID ratios are considered. Finally, the computed results are assessed by comparing with the outcomes of electrical simulations.Ministerio de Economía y Competitividad TEC2011-2830

    Semi-empirical model of MOST and passive devices focused on narrowband RF blocks

    Get PDF
    This paper presents a semi-empirical modeling of MOST and passive elements to be used in narrowband radiofrequency blocks for nanometer technologies. This model is based on a small set of look-up tables (LUTs) obtained via electrical simulations. The MOST description is valid for all-inversion regions of MOST and the data is extracted as function of the gm=ID characteristic; for the passive devices the LUTs include a simplified model of the element and its principal parasitic at the working frequency f0. These semi-empirical models are validated by designing a set of 2.4-GHz LNAs and 2.4-GHz and 5-GHz VCOs in three different MOST inversion regions

    Simple evaluation of the nonlinearity signature of an ADC using a spectral approach

    Get PDF
    This work presents a new method to estimate the nonlinearity characteristics of analog-to-digital converters (ADCs). The method is based on a nonnecessarily polynomial continuous and differentiable mathematical model of the converter transfer function, and on the spectral processing of the converter output under a sinusoidal input excitation. The simulation and experiments performed on different ADC examples prove the feasibility of the proposed method, even when the ADC nonlinearity pattern has very strong discontinuities. When compared with the traditional code histogram method, it also shows its low cost and efficiency since a significant lower number of output samples can be used still giving very realistic INL signature values.Spanish Project TEC2007-68072Junta de Andalucia EXC/2005/TIC-92

    Background Digital Calibration of Comparator Offsets in Pipeline ADCs

    Get PDF
    This brief presents a low-cost digital technique for background calibration of comparator offsets in pipeline analog-to-digital converters (ADCs). Thanks to calibration, comparator offset errors above half the stage least-significant bit margin in a unitary redundancy scheme are admissible, thus relaxing comparator design requirements and allowing their optimization for low-power high-speed applications and low input capacitance. The technique also makes it possible to relax design requirements of stage amplifiers within the pipeline queue, since output swing and driving capability are significantly lower. In this brief, the proposal is validated using realistic hardware-behavioral models.Junta de Andalucía P09-TIC-5386Gobierno Español TEC2011-2830

    On chopper effects in discrete-time ΣΔ modulators

    Get PDF
    Analog-to-digital converters based on ΣΔ modulators are used in a wide variety of applications. Due to their inherent monotonous behavior, high linearity, and large dynamic range, they are often the preferred option for sensor and instrumentation. Offset and flicker noise are usual concerns for this type of applications, and one way to minimize their effects is to use a chopper in the front-end integrator of the modulator. Due to its simple operation principle, the action of the chopper in the integrator is often overlooked. In this paper, we provide an analytical study of the static effects in ΣΔ modulators, which shows that the introduction of chopper is not transparent to the modulator operation and should thus be designed with care.Gobierno de España TEC-2007-68072Consejo Superior de Investigaciones Científicas 200850I21

    Design methodology for low-jitter differential clock recovery circuits in high performance ADCs

    Get PDF
    This paper presents a design methodology for the simultaneous optimization of jitter and power consumption in ultra-low jitter clock recovery circuits (<100fsrms) for high-performance ADCs. The key ideas of the design methodology are: a) a smart parameterization of transistor sizes to have smooth dependence of specifications on the design variables, b) based on this parameterization, carrying out a design space sub-sampling which allows capturing the whole circuit performance for reducing computation resources and time during optimization. The proposed methodology, which can easily incorporate process voltage and temperature (PVT) variations, has been used to perform a systematic design space exploration that provides sub-100fs jitter clock recovery circuits in two CMOS commercial processes at different technological nodes (1.8V 0.18μm and 1.2V 90nm). Post-layout simulation results for a case of study with typical jitter of 68fs for a 1.8V 80dB-SNDR 100Msps Pipeline ADC application are also shown as demonstrator.Gobierno de España TEC2015-68448-REuropean Space Agency 4000108445-13-NL-R

    Closed-loop Simulation Method for Evaluation of Static Offset in Discrete-Time Comparators

    Get PDF
    This paper presents a simulation-based method for evaluating the static offset in discrete-time comparators. The proposed procedure is based on a closed-loop algorithm which forces the input signal of the comparator to quickly converge to its effective threshold. From this value, the final offset is computed by subtracting the ideal reference. The proposal was validated using realistic behavioral models and transistor-level simulations in a 0.18μm CMOS technology. The application of the method reduces by several orders of magnitude the number of cycles needed to characterize the offset during design, drastically improving productivity.Junta de Andalucía P09-TIC-5386Ministerio de Economía y Competitividad TEC2011-2830

    Random chopping in ΣΔ modulators

    Get PDF
    Organizado por la Universidad de Zaragoza (Unizar) del 18 al 20 de Noviembre del 2009Σ∆ modulators make a clever use of oversampling and exhibit inherent monotonicity, high linearity and large dynamic range but a restricted frequency range. As a result Σ∆ modulators are often the preferred option for sensor and instrumentation. Offset and Flicker noise are usual concerns for this type of applications and one way to minimize their effects is to use a chopper in the front-end integrator of the modulator. Frequency-shaped random chopping has been pro- posed to minimize the impact of reference voltage interference. It is shown in this paper that the chopper signal is not the only term that modulates the offset and Flicker noise and that unwanted crosstalk can significantly degrade the performance of the modulator.Junta de Andalucía EXC/2005/TIC-927Gobierno de España TEC-2007-6807

    Testing mixed-signal cores: a practical oscillation-based test in an analog macrocell

    Get PDF
    A formal set of design decisions can aid in using oscillation-based test (OBT) for analog subsystems in SoCs. The goal is to offer designers testing options that do not have significant area overhead, performance degradation, or test time. This work shows that OBT is a potential candidate for IP providers to use in combination with functional test techniques. We have shown how to modify the basic concept of OBT to come up with a practical method. Using our approach, designers can use OBT to pave the way for future developments in SoC testing, and it is simple to extend this idea to BIST.European Union 2635
    corecore